If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20=b^2+8b
We move all terms to the left:
20-(b^2+8b)=0
We get rid of parentheses
-b^2-8b+20=0
We add all the numbers together, and all the variables
-1b^2-8b+20=0
a = -1; b = -8; c = +20;
Δ = b2-4ac
Δ = -82-4·(-1)·20
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-12}{2*-1}=\frac{-4}{-2} =+2 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+12}{2*-1}=\frac{20}{-2} =-10 $
| 2x=4=19 | | Y=-2x+1/3 | | -0.78(s−4)=-3.12 | | 5x^+93=13 | | 19y+41=79 | | g+26/7=8 | | 8x+0.3=8.3 | | -5f-370=-100 | | 34=2d+6 | | 1/2=y/10 | | 7(k)=245 | | 90=5y-400 | | x/4-2x+3/3=4 | | 5/6=y/12 | | y=-4(-9)+19 | | 2/3x-5/6=-5/12+1/4 | | 79=−6d+7 | | -(3-6b)=6b+6 | | 13=6r-11 | | 7n+48=25 | | 7(v−81)=84 | | t/4+53=62 | | t/4+ 53=62 | | -0.5(4a+8)=-2a+4 | | 11x-10=-12 | | 6+8w=78 | | 4+7y-30=40+13 | | 8(18.75+-0.75y)+6y=15 | | x=91=52 | | 3x^2+-5x=50 | | 8(18.75+-0.75y)=6y=150 | | 3/4.41=4/x |